Dexmedetomidine protects against lipid peroxidation and erythrocyte deformability alterations in experimental hepatic ischemia reperfusion injury
نویسندگان
چکیده
BACKGROUND Hepatic ischemia-reperfusion injury is a common clinical problem in hepatic surgery and transplantation. Several cellular and tissue structural and functional alterations are observed in such injury. The aim of this study was to evaluate the effect of dexmedetomidine on lipid peroxidation and erythrocyte deformability during ischemia-reperfusion injury in rats. METHODS Twenty-four Wistar Albino rats were randomly separated into three groups as control (C), ischemia-reperfusion injury (I/R) and dexmedetomidine group (I/R-D). Ischemia was induced with portal clampage for 45 min and reperfusion period was 45 min after declampage. Group I/R-D received dexmedetomidine 100 µg/kg i.p. 30 min before portal clampage. Serum malondialdehyde and superoxide dismutase activities to document lipid peroxidation and erythrocyte deformability index were investigated. RESULTS Serum superoxide dismutase and malondialdehyde activity levels were significantly higher and erythrocyte deformability index was decreased in hepatic ischemia-reperfusion group. However, these changes were observed to be prevented with dexmedetomidine treatment when given before portal clampage. CONCLUSION These findings clearly indicate that erythrocyte deformability index is decreased in hepatic ischemia reperfusion injury and has a potential role to prevent these alterations. The protective effect of dexmedetomidine on hepatic I/R injury is also decreased lipid peroxidation. Further experimental and clinical investigations may clarify the molecular mechanisms and clinical significance of these findings.
منابع مشابه
Effect of picroside II on erythrocyte deformability and lipid peroxidation in rats subjected to hind limb ischemia reperfusion injury
BACKGROUND Ischemia reperfusion injury (I/R) in hind limb is a frequent and important clinical phenomenon. Many structural and functional damages are observed in cells and tissues in these kinds of injuries. In this study, we aimed to evaluate the effect of picroside II on lipid peroxidation and erythrocyte deformability during I/R in rats. METHODS Rats were randomly divided into four groups ...
متن کاملGallic acid protects the liver in rats against injuries induced by transient ischemia-reperfusion through regulating microRNAs expressions
Objective(s): Gallic acid (GA) is a highly effective antioxidant, which its beneficial effects are well known, but its impact on expression of microRNAs (miRs) following hepatic ischemia-reperfusion (I/R) is not well recognized. Therefore, the current research was designed to specify the beneficial effect of GA on miRs (122 and 34a), liver functional tests, and histopathological alterations bey...
متن کاملHydrogen sulfide treatment protects against renal ischemia-reperfusion injury via induction of heat shock proteins in rats
Objective(s): Hydrogen sulfide (H2S) attenuates ischemia-reperfusion injury (IRI) in different organs. However, its mechanism of action in renal IRI remains unclear. The present study investigated the hypothesis that H2S attenuates renal IRI via the induction of heat shock proteins (HSPs).Materials and Methods: Adult Wistar rats were subjected to unilateral renal ischemia for 45 min followed by...
متن کاملThe preventive effects of dexmedetomidine against intestinal ischemia-reperfusion injury in Wistar rats
Objective(s): Intestinal ischemia-reperfusion is a major problem, which may lead to multiorgan failure and death. The aim of this study was to evaluate the protective effects of dexmedetomidine on cell proliferation, antioxidant system, cell death, and structural integrity in intestinal injury induced by ischemia-reperfusion in rats. Materials and Methods: Animals were randomized into three gro...
متن کاملA novel antioxidant non-steroidal anti-inflammatory agent protects rat liver against ischemia-reperfusion injury.
Liver ischemia followed by reperfusion is an important and common clinical event. A major mechanism is leukocyte adhesion to endothelium followed by release of reactive oxygen metabolites. The aim of this study was to determine the effects of a novel antioxidant ethylenediamine derivative with anti-inflammatory properties (compound IA) on an imitated clinical setting of acute hepatic ischemia-r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2012